Chrome Extension
WeChat Mini Program
Use on ChatGLM

Individual-Based Modelling Of Cyanobacteria Blooms: Physical And Physiological Processes

Learning Landscape Ecology(2021)

Cited 21|Views2
No score
Abstract
Lakes and reservoirs throughout the world are increasingly adversely affected by cyanobacterial harmful algal blooms (CyanoHABs). The development and spatiotemporal distributions of blooms are governed by complex physical mixing and transport processes that interact with physiological processes affecting the growth and loss of bloom-forming species. Individual-based models (IBMs) can provide a valuable tool for exploring and integrating some of these processes. Here we contend that the advantages of IBMs have not been fully exploited. The main reasons for the lack of progress in mainstreaming IBMs in numerical modelling are their complexity and high computational demand. In this review, we identify gaps and challenges in the use of IBMs for modelling CyanoHABs and provide an overview of the processes that should be considered for simulating the spatial and temporal distributions of cyanobacteria. Notably, important processes affecting cyanobacteria distributions, in particular their vertical passive movement, have not been considered in many existing lake ecosystem models. We identify the following research gaps that should be addressed in future studies that use IBMs: 1) effects of vertical movement and physiological processes relevant to cyanobacteria growth and accumulations, 2) effects and feedbacks of CyanoHABs on their environment; 3) inter and intra-specific competition of cyanobacteria species for nutrients and light; 4) use of high resolved temporal-spatial data for calibration and verification targets for IBMs; and 5) climate change impacts on the frequency, intensity and duration of CyanoHABs. IBMs are well adapted to incorporate these processes and should be considered as the next generation of models for simulating CyanoHABs. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
More
Translated text
Key words
Agent-based modelling, Cyanobacteria, Climate change, Individual-based modelling, Physical processes, Physiological processes
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined