Chrome Extension
WeChat Mini Program
Use on ChatGLM

Quantum criticality in a uniaxial organic ferroelectric

JOURNAL OF PHYSICS-CONDENSED MATTER(2015)

Cited 25|Views18
No score
Abstract
Tris-sarcosine calcium chloride (TSCC) is a highly uniaxial ferroelectric with a Curie temperature of approximately 130 K. By suppressing ferroelectricity with bromine substitution on the chlorine sites, pure single crystals were tuned through a ferroelectric quantum phase transition. The resulting quantum critical regime was investigated in detail and was found to persist up to temperatures of at least 30-40 K. The nature of long-range dipole interactions in uniaxial materials, which lead to non-analytical terms in the free-energy expansion in the polarization, predict a dielectric susceptibility varying as 1/T-3 close to the quantum critical point. Rather than this, we find that the dielectric susceptibility varies as 1/T-2 as expected and observed in better known multi-axial systems. We explain this result by identifying the ultra-weak nature of the dipole moments in the TSCC family of crystals. Interestingly, we observe a shallow minimum in the inverse dielectric function at low temperatures close to the quantum critical point in paraelectric samples that may be attributed to the coupling of quantum polarization and strain fields. Finally, we present results of the heat capacity and electro-caloric effect and explain how the time dependence of the polarization in ferroelectrics and paraelectrics should be considered when making quantitative estimates of temperature changes induced by applied electric fields.
More
Translated text
Key words
quantum criticality,ferroelectric,quantum phase transitions,low temperature,electro-caloric,dipole-dipole interactions,self-consistent phonon theory
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined