Microcapsules : reverse sonoporation and long-lasting, safe contrast

ACOUSTICAL IMAGING, VOL 31(2012)

Cited 4|Views3
No score
Abstract
We present a novel vehicle designed to serve the dual roles of enhanced ultrasound contrast and ultrasound-triggered drug delivery. The vehicle is comprised of a microcapsule that is filled with water in whose aqueous core a population of freely floating, phospholipid-coated microbubbles is suspended. At ultrasound intensities below the inertial cavitation threshold of the microbubbles, the microbubbles provide enhanced ultrasound contrast. The measured contrast is comparable in strength with SonoVue (R). Encapsulation of microbubbles within microcapsules putatively eliminates - or at least significantly slows - dissolution of gas in the bulk aqueous medium, thereby avoiding disappearance of microbubbles that would otherwise occur due to pressure-induced gas diffusion across the surfactant monolayer coating the microbubble-water interface. Results suggest that our vehicle might provide longer lasting contrast in a clinical setting. We demonstrate that encapsulation of the microbubbles within microcapsules causes at least a doubling of the ultrasound intensity necessary to induce inertial cavitation. Moreover, no cell death was observed when cells were insonified in the presence of microbubble-containing microcapsules, whereas appreciable cell death occurs with unencapsulated microbubbles. These results point toward a potential safety benefit during ultrasound contrast imaging by using encapsulated microbubbles. Studies are underway to investigate the feasibility of ultrasound-triggered release of drug from the microcapsules, owing to inertial-or stable-cavitation, or both. Whereas leakage from polymeric microcapsule shells, such as poly(lactic acid), seemingly requires shell rupture and is exceedingly difficult to achieve, leakage across a lipid bilayer microcapsule shells appears feasible. Leakage across a bilayer shell has the additional benefit that the leakage mechanism can be tuned via phase behavior (liquid-ordered versus liquid-disordered) and cavitation mechanism (stable versus inertial).
More
Translated text
Key words
encapsulation,cell death,microbubbles,sonoporation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined