Wearing a single DNA molecule with an AFM tip

mag(2015)

引用 23|浏览24
暂无评分
摘要
While the fundamental limit on the resolution achieved in an atomic force microscope (AFM) is clearly related to the tip radius, the fact that the tip can creep and/or wear during an experiment is often ignored. This is mainly due to the difficulty in characterizing the tip, and in particular a lack of reliable methods that can achieve this in situ. Here, we provide an in situ method to characterize the tip radius and monitor tip creep and/or wear and biomolecular sample wear in ambient dynamic AFM. This is achieved by monitoring the dynamics of the cantilever and the critical free amplitude to observe a switch from the attractive to the repulsive regime. The method is exemplified on the mechanically heterogeneous sample of single DNA molecules bound to mica mineral surfaces. Simultaneous monitoring of apparent height and width of single DNA molecules while detecting variations in the tip radius R as small as one nanometer are demonstrated. The yield stress can be readily exceeded for sharp tips (R<10 nm) at typical operating amplitudes (A>10nm). The ability to know the AFM tip radius in situ and in real-time opens up the future for quantitative nanoscale materials properties determination at the highest possible spatial resolution.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要