Submodular utility optimization in sensor networks for capacity constraints

mag(2019)

引用 0|浏览7
暂无评分
摘要
With the fast development of wireless sensor network (WSN) technologies, WSNs have widely shifted from a specialized platform for a single application to an integrated infrastructure supporting multiple applications. It is hence a critical problem to allocate multiple applications to multiple sensors in order to maximize user utility subject to various resource constraints. The resulting constrained optimization problem is difficult since it is discrete, nonlinear, and not in closed-form. In this report, we develop an efficient optimization algorithm with rigorous approximation bounds for submodular monotonic optimization with multiple knapsack constraints. Based on a variance reduction formulation, we prove several important theoretical properties, including the monotonicity and submodularity of functions and the multiple knapsack structure of constraints. Then, by exploiting these properties, we propose a local search algorithm with fractional relaxation of constraints and prove the approximation bound that is better than any known results. Experimentally, we verify the theoretical properties on a large dataset from the Intel Berkeley Lab. Comparison against other constrained search algorithms show that our algorithm is superior in both solution time and quality, making it a practical choice for WSN design. Type of Report: Other Department of Computer Science & Engineering Washington University in St. Louis Campus Box 1045 St. Louis, MO 63130 ph: (314) 935-6160 Optimizing Quality of Sensing in Shared Sensor Networks with Resource Constraints You Xu, Abusayeed Saifullah, Yixin Chen, Sangeeta Bhattacharya, and Chenyang Lu Department of Computer Science and Engineering Washington University in St. Louis Abstract. With the fast development of wireless sensor network (WSN) technologies, WSNs have widely shifted from a specialized platform for a single application to an integrated infrastructure supporting multiple applications. It is hence a critical problem to allocate multiple applications to multiple sensors in order to maximize user utility subject to various resource constraints. The resulting constrained optimization problem is difficult since it is discrete, nonlinear, and not in closed-form. In this paper, we develop an efficient optimization algorithm with rigorWith the fast development of wireless sensor network (WSN) technologies, WSNs have widely shifted from a specialized platform for a single application to an integrated infrastructure supporting multiple applications. It is hence a critical problem to allocate multiple applications to multiple sensors in order to maximize user utility subject to various resource constraints. The resulting constrained optimization problem is difficult since it is discrete, nonlinear, and not in closed-form. In this paper, we develop an efficient optimization algorithm with rigorous approximation bounds for submodular monotonic optimization with multiple knapsack constraints. Based on a variance reduction formulation, we prove several important theoretical properties, including the monotonicity and submodularity of functions and the multiple knapsack structure of constraints. Then, by exploiting these properties, we propose a local search algorithm with fractional relaxation of constraints and prove the approximation bound that is better than any known results. Experimentally, we verify the theoretical properties on a large dataset from the Intel Berkeley Lab. Comparison against other constrained search algorithms show that our algorithm is superior in both solution time and quality, making it a practical choice for WSN design.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要