Specific Binding of Alzheimer’s Abeta Peptide Fibrils to Single Walled Carbon Nanotubes

NANOMATERIALS AND NANOTECHNOLOGY(2012)

引用 6|浏览3
暂无评分
摘要
Amyloids constitute a class of protein and protein fragments believed to be involved in the pathologies associated with Alzheimer's, Parkinson's and Creutzfeldt Jakob diseases. These proteins can self assemble into unique fibrillar structures that are resistant to normal protein degradation. Interesting recent developments in the study of amyloid fibrils demonstrate that they bind carbon allotropes. In this study, using single walled carbon nanotube field-effect transistors (SWCNT FETs), we show that the fibrillar form of Alzheimer's amyloid beta (1 40) and (1 42) peptides specifically bind non-functionalized SWCNT in a saturable manner. Both peptides exhibited near identical binding curves with half-maximal binding concentrations of approximately 12 mu g/ml. Binding of the peptides to SWCNTs was diminished by including dimethyl sulphoxide (DMSO) at concentrations that inhibits fibril formation. Lastly, a monoclonal antibody (BAM-10), which binds to the N-terminal region of Alzheimer's amyloid fibrils, recognizes the amyloid peptides adhering to SWCNTs in the absence of DMSO, but not in the presence of 75% DMSO. Taken together, these results suggest that the fibrillar form of the Alzheimer's amyloid peptides are specifically binding to SWCNTs.
更多
查看译文
关键词
Carbon nanotubes,Alzheimer's,Amyloid peptides,Transistor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要