Weakly-Supervised Transfer Learning With Application in Precision Medicine

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING(2023)

引用 0|浏览7
暂无评分
摘要
Precision medicine aims to provide diagnosis and treatment accounting for individual differences. To develop machine learning models in support of precision medicine, personalized models are expected to have better performance than one-model-fits-all approaches. A significant challenge, however, is the limited number of labeled samples that can be collected from each individual due to practical constraints. Transfer Learning (TL) addresses this challenge by leveraging the information of other patients with the same disease (i.e., the source domain) when building a personalized model for each patient (i.e., the target domain). We propose Weakly-Supervised Transfer Learning (WS-TL) to tackle two challenges that existing TL algorithms do not address well: (i) the target domain has only a few or even no labeled samples; (ii) how to integrate domain knowledge into the TL design. We design a novel mathematical framework of WS-TL to learn a model for the target domain based on paired samples whose order relationships are inferred from domain knowledge, while at the same time integrating labeled samples in the source domain for transfer learning. Also, we propose an efficient active sampling strategy to select informative paired samples. Theoretical properties were investigated. Finally, we present a real-world application in precision medicine of brain cancer, where WS-TL is used to build personalized patient models to predict Tumor Cell Density (TCD) distribution across the brain based on MRI images. WS-TL has the highest accuracy compared to a variety of existing TL algorithms. The predicted TCD map for each patient can help facilitate individually optimized treatment.
更多
查看译文
关键词
Machine learning,statistical modeling,health care,precision medicine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要