Brassinosteroid analogue affects the senescence in two papaya genotypes submitted to drought stress

THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY(2013)

引用 23|浏览6
暂无评分
摘要
Brassinosteroids (BS) application is associated with the increase of tolerance to some kinds of stresses, such as those induced by the infection of pathogens, temperature, salt and water deficiency. In this work, the influence of a spirostanic analogue of brassinosteroid (SAB) in the leaves of papaya Golden and UENF/CALIMAN 01 (UC 01) was tested to evaluate alterations in the content of chlorophyll in plants submitted to drought stress (DS). When plants were 70 d old, SAB was applied (0,1 mg L-1) for five consecutive days in half of the plants meant for the experiment. The treatments were: control irrigated (I), I with SAB (IB), DS and DS with SAB (DSB). The evaluated leaves were marked in accordance to the age: LEAF 1 (youngest expanded leaf), LEAF 2 (insertion immediately below LEAF 1) and LEAF 3 (insertion immediately below LEAF 2). The same leaves were used throughtout the experimental period. After the thirteenth day, the chlorophyll contents of DSB (Golden and UC 01) were always lesser than the treatment DS in LEAF 2. The irrigation was restarted in stressed plants on the fifteenth day, followed by new application of SAB (IB and DSB treatments). In Golden plants, DSB showed the lowest values of chlorophyll contents after re-watering, while in UC 01, differences in chlorophyll contents between treatments DS and DSB had not occurred. Alterations in F-v/F-m relation did not occur among the treatments during stress. In genotype UC 01, the irrigated plants showed minor values of F-v/F-m at the end of the experiment, whereas the plants submitted to DS presented increments in this relation in this same time. These results indicate that SAB might have contributed to accelerate the rate of leaf senescence of the oldest leaves of stressed plants, redistributing photoassimilates and other compounds for the youngest leaves.
更多
查看译文
关键词
chlorophyll content,Carica papaya L.,fluorescence,water relations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要