谷歌浏览器插件
订阅小程序
在清言上使用

Characterization of LexA-mediated Transcriptional Enhancement of Bidirectional Hydrogenase in Synechocystis sp. PCC 6803 upon Exposure to Gamma Rays

Rapid Communication in Photoscience(2012)

引用 0|浏览5
暂无评分
摘要
Influence of gamma rays on the cyanobacterium Synechocystis sp. PCC 6803 cells was investigated in terms of a bidirectional hydrogenase, which is encoded by hoxEFUYH genes and responsible for biohydrogen production. Irradiated cells revealed a substantial change in stoichiometry of photosystems at one day after gamma irradiation at different doses. However, as evaluated by the maximal rate of photosynthetic oxygen evolution, maximal photochemical efficiency of photosystem II, and chlorophyll content, net photosynthesis or photosynthetic capacity was not significantly different between the control and irradiated cells. Instead, transcription of hoxE, hoxH, or lexA, which encodes a subunit of bidirectional hydrogenase or the only transcriptional activator, LexA, for hox genes, was commonly enhanced in the irradiated cells. This transcriptional enhancement was more conspicuously observed immediately after gamma irradiation. In contrast, hydrogenase activities were found to somewhat lower in the irradiated cells. Therefore, we propose that transcription of hox genes should be enhanced by gamma irradiation in a LexA-mediated and possibly photosynthesis-independent manner and that this enhancement might not induce a subsequent increase in hydrogenase activities, probably due to the presence of post-transcriptional and/or post-translational regulatory mechanisms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要