Transcriptomic Analyses Of Primary Astrocytes Under Tnf Alpha Treatment

GENOMICS DATA(2016)

引用 9|浏览22
暂无评分
摘要
Astrocytes, the most abundant glial cell population in the central nervous system, have important functional roles in the brain as blood brain barrier maintenance, synaptic transmission or intercellular communications [1,2]. Numerous studies suggested that astrocytes exhibit a functional and morphological high degree of plasticity. For example, following any brain injury, astrocytes become reactive and hypertrophic. This phenomenon, also called reactive gliosis, is characterized by a set of progressive gene expression and cellular changes [3]. Interestingly, in this context, astrocytes can re-acquire neurogenic properties. It has been shown that astrocytes can undergo dedifferentiation upon injury and inflammation, and may re-acquire the potentiality of neural progenitors [4,5,6,7].To assess the effect of inflammation on astrocytes, primary mouse astrocytes were treated with tumor necrosis factor alpha (TNF alpha), one of the main pro-inflammatory cytokines. The strength of this study is that pure primary astrocytes were used. As microglia are highly reactive immune cells, we used a magnetic cell sorting separation (MACS) method to further obtain highly pure astrocyte cultures devoid of microglia.Here, we provide details of the microarray data, which have been deposited in the Gene Expression Omnibus (GEO) under the series accession number GSE73022. The analysis and interpretation of these data are included in Gabel et al. (2015). Analysis of gene expression indicated that the NF kappa B pathway-associated genes were induced after a TNF alpha treatment. We have shown that primary astrocytes devoid of microglia can respond to a TNF alpha treatment with the re-expression of genes implicated in the glial cell development. (c) 2015 The Authors. Published by Elsevier Inc.
更多
查看译文
关键词
Primary astrocytes,Inflammation,Microarrays,Gene expression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要