谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Dynamic Response Of A Fluid-Conveying Riser Subject To Vortex-Induced Vibration: Integral Transform Solution

33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 6B: PIPELINE AND RISER TECHNOLOGY(2014)

引用 0|浏览1
暂无评分
摘要
Analysis of dynamic response of a fluid-conveying riser is an important aspect in subsea production system. In the present paper, dynamic response of a pinned-pinned riser subject to external fluid force was solved by the generalized integral transform technique (GITT). A nonlinear wake oscillator models was used to represent the cross-flow and in-line force acting on the riser, leading to a coupled system of second-order Partial Differential Equations (PDEs). The GITT approach was used to transform the system of PDEs to a system of Ordinary Differential Equations (ODEs), which was numerically solved by using the Adams-Moulton and Gear method (DIVPAG) developed by the International Mathematics and Statistics Library (IMSL). Numerical results were presented for comparison to those given by the numerical and experimental results, allowing a critical evaluation of the technique performance. The influence of conveying fluid velocity and mean top tension were evaluated to show that they should not be negligible in numerical simulation of Vortex-Induced Vibration of a long flexible riser.
更多
查看译文
关键词
vortex induced vibration,fluids
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要