Monolayer Tungsten Disulfide Laser

2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO)(2015)

Cited 21|Views19
No score
Abstract
When transition metal dichalcogenide (TMDC) crystals are thinned to monolayers, they undergo an indirect to direct bandgap transition, enabling rich electroluminescent and photoluminescent behaviors. Coupling and integration of TMDC monolayers with photonic crystal and distributed Bragg reflector microcavities have recently been reported with Purcell enhancement of spontaneous emission and strong light-matter interaction. However, realization of laser - a fundamental building block of optoelectronic system - remains a bottleneck, mainly due to the limited overall materials gain volume and difficulty to design efficient optical confinement structure. In fact, the quantum confinement on these layered d-electron materials leads to layer-dependent evolution of electronic structure with step like density of states for monolayers comparing to their bulk counterparts, Making TMDC monolayers a unique optical gain medium for superior lasing characteristics. Here, we report the first realization of monolayer tungsten disulfide (WS2) laser embedded in a microdisk resonator. To reduce the 2D material lasing threshold, we utilized a whispering gallery mode resonator with a high quality factor. The Si3N4/WS2/HSQ sandwich configuration provides a strong feedback and mode overlap. An excitonic laser emission has bee observed in the visible wavelength. Our work marks a major step towards monolayer-based on-chip active optoelectronics and integrated 2D photonic platforms for new optical communication and computing applications.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined