Substrate Temperature Dependent Surface Morphology Of Nanostructured Zinc Antimonides Thin Films

2015 10TH ASIAN CONTROL CONFERENCE (ASCC)(2015)

引用 23|浏览1
暂无评分
摘要
The growth and characterization of nanostructured zinc antimonides thin films are reported in this work. The nanostructured zinc antimonides thin films were prepared by RF magnetron sputtering using a single sputtering target. The range of growth parameters was determined for substrate temperature (50 degrees C - 150 degrees C), deposition time (600 s), argon flow rate (5 sccm) and RF power (50 W). The effects of manipulated growth parameters on surface morphology were investigated. XRD, EDX, FESEM and AFM were utilized to characterize the deposited thin films. Based on XRD characterization, Zn and Sb peaks are not captured in XRD patterns. The very low intensity of reflected peaks along 2 theta shows that the formation of deposited thin films is in amorphous form. From EDX characterization, it is confirmed that Zn and Sb elements existed in each deposited thin films. Zn seems to have relatively higher composition than Sb in each deposited thin films. It can be concluded that the growth parameters contributed to the deviation of the elementary composition. The AFM characterization shows the formation of nanograins and nanodots are depending on manipulated substrate temperature. As substrate temperature increased, it is found that the nanograins diameter is increased, low grain density and decreased in average roughness. It is confirmed that the height distribution of the nanograins and nanodots cause the surface to become rougher.
更多
查看译文
关键词
nanostructured zinc antimonides, surface morphology, grain diameter, average roughness, grain density
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要