Magnetic Fluid Hyperthermia of Rodent Tumors Using Manganese Perovskite Nanoparticles

Journal of Nanoparticles(2014)

Cited 45|Views2
No score
Abstract
Purpose. To test the antitumor activity of magnetic fluid (MF) on the basis of substituted lanthanum-strontium manganite nanoparticles combined with alternating magnetic field (AMF) in experiments with transplanted tumors. Materials and Methods. MF with a size of nanoparticles of 30–40 nm in aqueous agarose solution was investigated. The ability of MF to heat tumor under AMF (300 kHz, 7.7 kA/m) was tested in vivo with rodent tumors (Guerin carcinoma, Walker-256 carcinosarcoma, and Lewis lung carcinoma (3LL)). Results. Single administration of MF into the tumor at a dose of 150 mg/kg (rats) or 200 mg/kg (mice) followed by AMF within 20–30 min (treatment was repeated 3-4-fold) has resulted in the complete regression of tumor in the 35% of rats and 57% of mice. Administration of MF alone or action of AMF alone has not resulted in tumor growth inhibition. The chemomodifying effect of nanohyperthermia was determined, in particular for cisplatinum: thermal enhancement ratio was 2.0. It was also observed that nanohyperthermia has resulted in the absence of 3LL metastases in 43% of mice. Conclusions. MF on the basis of lanthanum-strontium manganite may be considered as an effective inductor of tumor local hyperthermia.
More
Translated text
Key words
Magnetic Nanoparticles
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined