A mathematical model of bone remodeling considering mechanoregulatory mechanisms: theoretical model development and numerical studies

Proceedings of 10th World Congress on Computational Mechanics(2014)

引用 0|浏览4
暂无评分
摘要
Bone remodeling involves the coordinated removal of bone by osteoclasts and addition of bone by osteoblasts, a process that is modulated by the prevailing mechanical environment. In this paper a fully coupled model of bone remodeling is developed, based on coupling a bone cell population model with a micromechanical homogenization scheme of bone stiffness. While the former model considers biochemical regulatory mechanisms between bone cells such as the RANK-RANKL-OPG pathway and action of TGF-beta, the latter model allows for accurate upscaling of the mechanical properties of bone. Importantly, we consider bone remodeling as being controlled proportionally to the microscopic strain energy density, on the observation scale where the sensing of the mechanical loading takes place, estimated by means of continuum micromechanics-based strain concentration. This approach allows to address two fundamental questions of bone biology: (i) How do biochemical changes influ- ence bone remodeling and so affect the composition and mechanical properties of bone? and (ii) What mechanisms are responsible for mechanoregulation of bone remodeling? Numerical studies highlight the conceptual advantage of this new approach compared to conventional phenomenological models. It is demonstrated that the proposed model is able to simulate changes of the bone constituent volume fractions that are in qualitative agreement with exper- imental observations for osteoporotic and disuse syndromes.
更多
查看译文
关键词
bone remodeling,mechanoregulatory mechanisms,mathematical model,theoretical model development
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要