Transport Mechanisms In Polarized Semiconductor Photocathodes

PROCEEDINGS OF THE 17TH INTERNATIONAL SPIN PHYSICS SYMPOSIUM(2007)

引用 1|浏览21
暂无评分
摘要
We investigated the effect of an accelerating field on the spin polarization of photogenerated electrons in a 100nm thick GaAs based photocathode active region. By decreasing the transport time of the electrons and the number of scattering events that cause depolarization, we expected to increase the polarization as was indicated by Monte Carlo simulations of the scattering and transport time statistics of the electrons.A tungsten (W) grid was deposited on the cathode surface to provide a uniform voltage distribution across the cathode surface. The metal grid formed a Schottky contact with the semiconductor surface. The bias voltage was primarily dropped at the metal semiconductor interface region, which is the cathode active region. For positive surface bias, the accelerating voltage not only increased the polarization, but it also enhanced the quantum efficiency of the photocathode. Preliminary results verify the bias effect on both quantum efficiency and polarization by a factor of 1.8 and 1% respectively.
更多
查看译文
关键词
polarized electron, drift spin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要