A Study On The Influences Of Reactivity Feedback Mechanisms In China Experimental Fast Reactor Unprotected Transients

PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING - 2013, VOL 2(2014)

引用 0|浏览3
暂无评分
摘要
Inherent safety properties of reactor have always played an important role in severe accidents preventing and consequences mitigation. With proper design, reactivity feedback mechanisms can bring benign reactivity feedbacks to the reactor core during unprotected transients, thus contributing to the severe accidents mitigation. In overpower transients, the increasing power causes the fuel temperature to increase, which directly brings fuel Doppler feedback and core axial expansion feedback. In unprotected loss-of-flow accidents, as the flow rate decreases, the mismatch of power and flow causes the increase of coolant temperature, thus directly resulting in the coolant reactivity, core radial expansion as well as the control rod driveline expansion feedbacks. Through the simulation of China Experimental Fast Reactor (CEFR) unprotected transients, the influences of different reactivity feedback mechanisms have been investigated and analyzed. The coolant reactivity exhibits significant negative feedback and makes the dominant contribution in controlling the reactivity in both UTOP and ULOF transients.
更多
查看译文
关键词
china,feedback
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要