Cu spectroscopy from a z-pinch plasma

PHYSICA SCRIPTA(2014)

引用 3|浏览22
暂无评分
摘要
Recent improvements in diagnostic techniques at the Sandia Laboratories Z accelerator have facilitated the production of very detailed x-ray spectral data in the range of 1-20 keV. The high energy density plasma produced in a z-pinch is inherently in non-local thermodynamic equilibrium (NLTE). We therefore employ a NLTE collisional equilibrium model in a 1D radiation-magnetohydrodynamics code to simulate the dynamics of the pinch and to generate synthetic emission spectra. We will discuss the effects on radiation spectra and the yields of using simplifying assumptions in the atomic model and/or the radiation transport. X-ray emission from moderately high atomic number plasmas such as Fe and Cu wire array implosions often include substantial 2p-1s K-alpha radiation. In a z-pinch plasma, K-shell vacancies can be produced by e-beams, hot electrons at the tail of a Maxwellian and also by photopumping from energetic photons emitted near the pinch axis. In the Z-1975 Cu wire implosion, K-alpha lines from various ionization stages of Cu as well as from minor constituents including Ni, Fe and Cr are observed. We have calculated K-alpha production within a full simulation of a Cu implosion, including contributions from energetic electrons and photons. Photo-pumped K-alpha emission can be distinguished from that produced by e-beams; K-shell vacancies will be produced near the axis for a beam, and near the outer edge of the plasma for energetic photons. Spectroscopic modeling of these K-alpha lines as well as K- and L-shell emission from valence electrons can provide quantitative diagnostics of plasma parameters. This methodology can also be used to investigate K-alpha emission from other laboratory experiments such as EBIT and astrophysical plasmas.
更多
查看译文
关键词
spectroscopy,non-LTE modeling,z-pinch plasma
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要