Three-Dimensional Diamond Detectors: Charge Collection Efficiency Of Graphitic Electrodes

APPLIED PHYSICS LETTERS(2013)

引用 56|浏览21
暂无评分
摘要
Implementation of 3D-architectures in diamond detectors promises to achieve unreached performances in the radiation-harsh environment of future high-energy physics experiments. This work reports on the collection efficiency under beta-irradiation of graphitic 3D-electrodes, created by laser pulses in the domains of nanoseconds (ns-made-sensors) and femtoseconds (fs-made-sensors). Full collection is achieved with the fs-made-sensors, while a loss of 25%-30% is found for the ns-made-sensors. The peculiar behaviour of ns-made sensors has been explained by the presence of a nano-structured sp(3)-carbon layer around the graphitic electrodes, evidenced by micro-Raman imaging, by means of a numerical model of the charge transport near the electrodes. (C) 2013 AIP Publishing LLC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要