Optimal guidance laws for diffractive solar sails with Littrow transmission grating

AEROSPACE SCIENCE AND TECHNOLOGY(2024)

引用 0|浏览4
暂无评分
摘要
The use of advanced and highly engineered membrane films in solar sail design enables the thrust vector to achieve some specific characteristics that are capable of affecting the performance of a sail-based spacecraft trajectory in a transfer mission scenario. In this field, the recently proposed diffractive sail uses metamaterial films to coat the very thin sail membrane as a potential and effective (in some mission scenarios) alternative to the more common metallic reflective coating. The purpose of this work is to study the optimal guidance law, as a function of sail pitch angle, of a diffractive sailcraft with a Littrow transmission grating film in a typical two-dimensional heliocentric transfer. In particular, the optimal steering law is obtained through a classical indirect approach, depending on the characteristics of Lawden's primer vector, either in exact (by numerical simulation) or approximate (by analytical means) form. The performance of a diffractive sailcraft with a Littrow transmission grating film is then analyzed in a number of potential mission scenarios such as, for example, a phasing in a circular orbit, an interplanetary transfer between coplanar Keplerian trajectories, a circular orbit flip maneuver, and an escape from the Solar System. Simulation results indicate that this specific diffractive sailcraft is potentially capable of executing a typical solar sail-based mission scenario with a simple steering law.
更多
查看译文
关键词
Solar sail,Diffractive film,Littrow transmission grating,Optimal control law,Heliocentric trajectory optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要