Crab Nebula: Five-year Observation with ARGO-YBJ

ASTROPHYSICAL JOURNAL(2015)

引用 56|浏览133
暂无评分
摘要
The ARGO-YBJ air shower detector monitored the Crab Nebula gamma-ray emission from 2007 November to 2013 February. The integrated signal, consisting of similar to 3.3 x 10(5) events, reached the statistical significance of 21.1 standard deviations. The obtained energy spectrum in the energy range 0.3-20 TeV can be described by a power law function dN/dE = I-0 (E/2TeV)(-alpha), with a flux normalization I-0 = (5.2 +/- 0.2) x 10(-12) photons cm(-2) s(-1) TeV (1) and alpha = 2.63 +/- 0.05, corresponding to an integrated flux above 1 TeV of 1.97 x 10(-11) photons cm(-2) s(-1). The systematic error is estimated to be less than 30% for the flux normalization and 0.06 for the spectral index. Assuming a power law spectrum with an exponential cutoff dN/dE = I-0 (E/2 TeV)(-alpha) exp (-E/E-cut), the lower limit of the cutoff energy E-cut is 12 TeV, at 90% confidence level. Our extended data set allows the study of the TeV emission over long timescales. Over five years, the light curve of the Crab Nebula in 200-day bins is compatible with a steady emission with a probability of 7.3 x 10(-2). A correlated analysis with Fermi-LAT data over similar to 4.5 yr using the light curves of the two experiments gives a Pearson correlation coefficient r = 0.56 +/- 0.22. Concerning flux variations on timescales of days, a "blind" search for flares with a duration of 1-15 days gives no excess with a significance higher than four standard deviations. The average rate measured by ARGO-YBJ during the three most powerful flares detected by Fermi-LAT is 205 +/- 91 photons day(-1), consistent with the average value of 137 +/- 10 day(-1).
更多
查看译文
关键词
gamma rays: stars,pulsars: individual (Crab Nebula)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要