Chemical Processing of Pure Ammonia and Ammonia-Water Ices Induced by Heavy Ions

ASTROPHYSICAL JOURNAL(2013)

引用 25|浏览4
暂无评分
摘要
Cosmic rays are possibly the main agents to prevent the freeze-out of molecules onto grain surfaces in cold dense clouds. Ammonia (NH3) is one of the most abundant molecules present in dust ice mantles, with a concentration of up to 15% relative to water (H2O). FTIR spectroscopy is used to monitor pure NH3 and NH3-H2O ice samples as they are irradiated with Ni and Zn ion beams (500-600 MeV) at GANIL/France. New species, such as hydrazine (N2H4), diazene (N2H2 isomers), molecular hydrogen (H-2), and nitrogen (N-2) were identified after irradiation of pure NH3 ices. Nitrous oxide (N2O), nitrogen oxide (NO), nitrogen dioxide (NO2), and hydroxylamine (NH2OH) are some of the products of the NH3-H2O ice radiolysis. The spectral band at 6.85 mu m was observed after irradiation of both types of ice. Besides the likely contribution of ammonium (NH4+) and amino (NH2) radicals, data suggest a small contribution of NH2OH to this band profile after high fluences of irradiation of NH3-H2O ices. The spectral shift of the NH3 "umbrella" mode (9.3 mu m) band is parameterized as a function of NH3/H2O ratio in amorphous ices. Ammonia and water destruction cross-sections are obtained, as well as the rate of NH3-H2O (1:10) ice compaction, measured by the OH dangling bond destruction cross-section. Ammonia destruction is enhanced in the presence of H2O in the ice and a power law relationship between stopping power and NH3 destruction cross-section is verified. Such results may provide relevant information for the evolution of molecular species in dense molecular clouds.
更多
查看译文
关键词
astrochemistry,cosmic rays,ISM: molecules,methods: laboratory: molecular
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要