Chrome Extension
WeChat Mini Program
Use on ChatGLM

Continuous Production of Nanostructured Particles Using Spatial Atomic Layer Deposition

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A(2015)

Cited 45|Views6
No score
Abstract
In this paper, the authors demonstrate a novel spatial atomic layer deposition (ALD) process based on pneumatic transport of nanoparticle agglomerates. Nanoclusters of platinum (Pt) of ∼1 nm diameter are deposited onto titania (TiO2) P25 nanoparticles resulting to a continuous production of an active photocatalyst (0.12–0.31 wt. % of Pt) at a rate of about 1 g min−1. Tuning the precursor injection velocity (10–40 m s−1) enhances the contact between the precursor and the pneumatically transported support flows. Decreasing the chemisorption temperature (from 250 to 100 °C) results in more uniform distribution of the Pt nanoclusters as it decreases the reaction rate as compared to the rate of diffusion into the nanoparticle agglomerates. Utilizing this photocatalyst in the oxidation reaction of Acid Blue 9 showed a factor of five increase of the photocatalytic activity compared to the native P25 nanoparticles. The use of spatial particle ALD can be further expanded to deposition of nanoclusters on porous, micron-sized particles and to the production of core–shell nanoparticles enabling the robust and scalable manufacturing of nanostructured powders for catalysis and other applications.
More
Translated text
Key words
Atomic Layer Deposition,Pulsed Laser Deposition
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined