Chrome Extension
WeChat Mini Program
Use on ChatGLM

Localized Excitons Mediate Defect Emission In Zno Powders

JOURNAL OF APPLIED PHYSICS(2013)

Cited 32|Views15
No score
Abstract
A series of continuous-wave spectroscopic measurements elucidates the mechanism responsible for the technologically important green emission from deep-level traps in ZnO:Zn powders. Analysis of low-temperature photoluminescence (PL) and PL excitation spectra for bound excitons compared to the temperature-dependent behavior of the green emission reveals a deep correlation between green PL and specific donor-bound excitons. Direct excitation of these bound excitons produces highly efficient green emission from near-surface defects. When normalized by the measured external quantum efficiency, the integrated PL for both excitonic and green emission features grows identically with excitation intensity, confirming the strong connection between green emission and excitons. The implications of these findings are used to circumscribe operational characteristics of doped ZnO-based white light phosphors whose quantum efficiency is almost twice as large when the bound excitons are directly excited. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4798359]
More
Translated text
Key words
zno powders,defect emission,excitons
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined