Herbivory in a subtropical seagrass ecosystem: separating the functional role of different grazers

MARINE ECOLOGY PROGRESS SERIES(2014)

引用 31|浏览19
暂无评分
摘要
Seagrass meadows provide many important ecosystem services, but they are threatened by human activities and are in decline globally. In particular, eutrophication arising from human activities promotes algal growth, which negatively affects seagrass. Herbivores consume algae and can, therefore, reduce eutrophication effects, but they may also consume seagrass. Little is known, however, about grazer-epiphyte-seagrass interactions in subtropical seagrass in the Indo-Pacific. We used a 5 wk exclusion experiment to quantify the influence of different grazers in seagrass (dominated by Zostera muelleri) in Moreton Bay, eastern Australia. Our results show that herbivory does indeed affect seagrass-epiphyte dynamics in this region and that different grazers can exert different effects in seagrass ecosystems. In particular, exclusion of small mesograzers (i.e. amphipods and juvenile shrimp) caused epiphyte biomass to increase by up to 233%. Exclusion of medium mesograzers (i.e. small fish and prawns) resulted in increases of up to 10% in seagrass cover, 53% in shoot height and 29% in shoot density. Large mesograzers (i.e. adult fish) and macrograzers (i.e. turtles and dugong) did not appear to play a role in the study system. These results demonstrate that mesograzers can be important in controlling epiphytic algae in subtropical Indo-Pacific seagrass, and show that different mesograzers can affect seagrass-epiphyte dynamics in different ways. It is critical that the functional effects of different herbivores be considered when implementing programs for seagrass conservation and restoration.
更多
查看译文
关键词
Seagrass,Epiphytes,Herbivory,Mesograzers,Fish,Invertebrates,Moreton Bay,Australia
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要