Recent Advances in Nonpolar and Semipolar InGaN Light-Emitting Diodes (LEDs)

Journal of Nanoscience and Nanotechnology(2015)

引用 15|浏览5
暂无评分
摘要
The III-nitrides have attracted much attention because of their applicability in optoelectronic devices, whose emission wavelengths range from green to ultraviolet light due to their wide band gap. However, conventional c-plane GaN-based devices are influenced significantly by spontaneous and piezoelectric polarization effects, which could pose a limitation for increased luminous efficiency as a result of the quantum confined stark effect. Since the early 2000s, many groups have tried to solve these problems by examining the growth of GaN on non- or semipolar surface planes. High power non- and semipolar LEDs can be realized by the growth of a thick active layer. In addition, it is expected that it is possible to grow nonpolar InGaN LEDs with high quality p-GaN layers due to lower hole activation energy, and also long-wavelength semipolar InGaN LEDs because of the capacity for high indium incorporation in the quantum wells (QWs). However, non- and semipolar structures grown on sapphire substrate usually contain a high density of basal stacking faults and threading dislocations. For this reason, the growth of non- and semipolar GaN-based LEDs on a sapphire substrate has been attempted through the introduction of defect reduction techniques such as epitaxial lateral overgrowth, patterned sapphire substrate and re-growth techniques on a porous GaN layer, etc. Also, some researchers have grown high quality non- and semipolar GaN-based LEDs using non- and semipolar freestanding GaN substrates. In this review paper, we introduce and discuss recent progress in the development of non- and semipolar GaN-based LEDs and freestanding GaN substrates.
更多
查看译文
关键词
Nonpolar,Semipolar,GaN,InGaN,LEDs,MOCVD,HVPE
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要