Remote leak localization approach for fusion machines

FUSION ENGINEERING AND DESIGN(2013)

引用 12|浏览13
暂无评分
摘要
Fusion machine operation requires high-vacuum conditions and does not tolerate water or gas leak in the vacuum vessels, even if they are micrometric. Tore Supra, as a fully actively cooled tokamak, has got a large leak management experience; 34 water leaks occurred since the beginning of its operation in 1988. To handle this issue, after preliminary machine protection phases, the current process for leak localization is based on water or helium pressurization network by network. It generally allows the identification of a set of components where the leakage element is located. However, the unique background of CEA-IRFM laboratory points needs of accuracy and promptness out in the leak localization process. Moreover, in-vessel interventions have to be performed trying to minimize time and risks for the persons. They are linked to access conditions, radioactivity, tracer gas high pressure and vessel conditioning. Remote operation will be one of the ways to improve these points on future fusion machines. In this case, leak sensors would have to be light weight devices in order to be integrated on a carrier or to be located outside with a sniffing process set up. A leak localization program is on-going at CEA-IRFM Laboratory with the first goal of identifying and characterizing relevant concepts to localize helium or water leaks on ITER. In the same time, CEA has developed robotic carrier for effective in-vessel intervention in a hostile environment. Three major tests campaigns with the goal to identify leak sensors have been achieved on several CEA test-beds since 2010. Very promising results have been obtained: relevant scenario of leak localization performed, concepts tested in a high volume test-bed called TITAN, and, in several conditions of pressure and temperature (ultrahigh vacuum to atmospheric pressure and 20-120 degrees C), "ppm" traces of helium or water have been measured. To improve these first promising results, a new test-bed called ROVE (remote operation vacuum equipment) has been set up in 2012 to qualify leak sensors and remote operation. A list of concepts has been set out from contacts with manufacturers and laboratories. For sniffing solutions it includes laser absorption measurement, mass spectrometer analyses and vibrating quartz. For embeddable concepts thermal conductivity and capacitive sensors are considered. Choice of concepts to detect water or helium traces is based on major criteria, such as weight, high sensibility and fast response time and recovery time. They also have to be operational under primary vacuum conditions or atmospheric pressure and from ambient temperature to 60 degrees C. (C) 2013 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Remote operation,Leak localization,Vacuum technologies
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要