Molecular dynamic analysis of mutant Y195I α-cyclodextrin glycosyltransferase with switched product specificity from α-cyclodextrin to γ-cyclodextrin

Journal of Molecular Modeling(2015)

引用 25|浏览9
暂无评分
摘要
Alpha-cyclodextrin (α-CD) glycosyltransferase (α-CGTase) can convert starch into α-CD blended with various proportions of β-cyclodextrin (β-CD) and/or γ-cyclodextrin (γ-CD). In this study, we verified the catalytic characteristics of purified Y195I α-CGTase and elucidated the mechanism of action with molecular dynamic (MD) simulations. We found that purified Y195I α-CGTase produced less α-CD, slightly more β-CD, and significantly more γ-CD than wild-type α-CGTase. Correspondingly, α-CD-based K m values increased, and β-CD- and γ-CD-based K m values decreased. MD simulation studies revealed that the dynamic trajectories of the substrate oligosaccharide chain in the mutant CGTase binding site were significantly different from those in the wild-type enzyme, with reduced hydrophobic interaction, finally resulting in different product specificity and more γ-CD formation.
更多
查看译文
关键词
Cyclodextrin glucanotransferases,Y195I α-CGTase,α-CD,γ-CD,Molecular dynamic simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要