Epi-reevesioside F inhibits Na+/K+-ATPase, causing cytosolic acidification, Bak activation and apoptosis in glioblastoma.

Oncotarget(2015)

引用 6|浏览19
暂无评分
摘要
Epi-reevesioside F, a new cardiac glycoside isolated from the root of Reevesia formosana, displayed potent activity against glioblastoma cells. Epi-reevesioside F was more potent than ouabain with IC50 values of 27.3±1.7 vs. 48.7±1.8 nM (P < 0.001) and 45.0±3.4 vs. 81.3±4.3 nM (P < 0.001) in glioblastoma T98 and U87 cells, respectively. However, both Epi-reevesioside F and ouabain were ineffective in A172 cells, a glioblastoma cell line with low Na+/K+-ATPase α3 subunit expression. Epi-reevesioside F induced cell cycle arrest at S and G2 phases and apoptosis. It also induced an increase of intracellular concentration of Na+ but not Ca2+, cleavage and exposure of N-terminus of Bak, loss of mitochondrial membrane potential, inhibition of Akt activity and induction of caspase cascades. Potassium supplements significantly inhibited Epi-reevesioside F-induced effects. Notably, Epi-reevesioside F caused cytosolic acidification that was highly correlated with the anti-proliferative activity. In summary, the data suggest that Epi-reevesioside F inhibits Na+/K+-ATPase, leading to overload of intracellular Na+ and cytosolic acidification, Bak activation and loss of mitochondrial membrane potential. The PI3-kinase/Akt pathway is inhibited and caspase-dependent apoptosis is ultimately triggered in Epi-reevesioside F-treated glioblastoma cells.
更多
查看译文
关键词
Epi-reevesioside F,bak activation,cytosolic acidification,intracellular Na+ concentration,mitochondrial dysfunction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要