Oxygen reduction and evolution reactions of air electrodes using a perovskite oxide as an electrocatalyst

Journal of Power Sources(2015)

引用 36|浏览3
暂无评分
摘要
The oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) of air electrodes consisting of La0.5Sr0.5CoO3 and/or carbon in the electrocatalyst layer are studied by using two types of gas diffusion electrodes. Cyclic voltammetry and square wave voltammetry studies reveal very low ORR activity of carbon-free perovskite and remarkably enhanced ORR of perovskite-carbon composites. The ORR current density at −0.5 V vs. Hg/HgO is higher than 200 mA cm−2 in a wide range of perovskite-carbon composition, suggesting good peroxide reducing capability of the perovskite. The ORR mechanisms of perovskite-carbon composites are consistent with the 2+2-electron mechanisms. The ORR and OER properties of perovskite-carbon composite electrodes are significantly influenced by the carbon species. The electrode exhibits a higher ORR current density, but inferior cycling performances when a carbon material with a higher specific surface area is used, and vice versa. Under a current density of 20 mA cm−2 and ORR and OER durations of 30 min, a gas diffusion type electrode consists of La0.5Sr0.5CoO3 and a low surface area carbon are capable of more than 150 cycles.
更多
查看译文
关键词
Air electrode,Oxygen reduction reaction,Oxygen evolution reaction,Perovskite,Electrocatalyst
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要