Lithium salt with a super-delocalized perfluorinated sulfonimide anion as conducting salt for lithium-ion cells: Physicochemical and electrochemical properties

Journal of Power Sources(2015)

引用 26|浏览42
暂无评分
摘要
Lithium salt with a super-delocalized imide anion, namely (trifluoromethane(S-trifluoromethanesulfonylimino)sulfonyl) (trifluoromethanesulfonyl)imide ([CF3SO(=NSO2CF3)2]−), [sTFSI]−), has been prepared and studied as conducting salt for Li-ion cells. The fundamental physicochemical and electrochemical properties of neat Li[sTFSI] and its carbonate-based liquid electrolyte have been characterized with various chemical and electrochemical tools. Li[sTFSI] shows a low melting point at 118 °C, and is thermally stable up to 300 °C without decomposition on the spectra of differential scanning calorimetry-thermogravimetry-mass spectrometry (DSC-TG-MS). The electrolyte of 1.0 M (mol dm−3) Li[sTFSI] in ethylene carbonate (EC)/ethyl-methyl-carbonate (EMC) (3:7, v/v) containing 0.3% water does not show any hydrolytic decomposition on the spectra of 1H and 19F NMR, after storage at 85 °C for 10 days. The conductivities of 1.0 M Li[sTFSI]-EC/EMC (3:7, v/v) are slightly lower than those of Li[(CF3SO2)2N] (LiTFSI), but higher than those of Li[(C2F5SO2)2N] (LiBETI). The electrochemical behavior of Al foil in the Li[sTFSI]-based electrolyte has been investigated by using cyclic voltammetry and chronoamperometry, and scanning electron microscope (SEM). It is illustrated that Al metal does not corrode in the high potential region (3–5 V vs. Li/Li+) in the Li[sTFSI]-based electrolyte. On Pt electrode, the Li[sTFSI]-based electrolyte is highly resistant to oxidation (ca. 5 V vs. Li/Li+), and is also resistant to reduction to allow Li deposition and stripping. The applicability of Li[sTFSI] as conducting salt for Li-ion cells has been tested using graphite/LiCoO2 cells. It shows that the cell with Li[sTFSI] displays better cycling performance than that with LiPF6.
更多
查看译文
关键词
Lithium salt,Perfluorinated sulfonimide,Electrolyte,Aluminum corrosion,Lithium-ion battery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要