OH-initiated heterogeneous oxidation of tris-2-butoxyethyl phosphate: implications for its fate in the atmosphere

ATMOSPHERIC CHEMISTRY AND PHYSICS(2014)

引用 22|浏览10
暂无评分
摘要
A particle-phase relative rates technique is used to investigate the heterogeneous reaction between OH radicals and tris-2-butoxyethyl phosphate (TBEP) at 298 K by combining aerosol time-of-flight mass spectrometry (C-ToF-MS) data and positive matrix factor (PMF) analysis. The derived second-order rate constants (k(2)) for the heterogeneous loss of TBEP is (4.44 +/- 0.45) x 10(-12) cm(3) molecule(-1) s(-1), from which an approximate particle-phase lifetime was estimated to be 2.6 (2.3-2.9) days. However, large differences in the rate constants for TBEP relative to a reference compound were observed when comparing internally and externally mixed TBEP/organic particles, and upon changes in the RH. The heterogeneous degradation of TBEP was found to be depressed or enhanced depending upon the particle mixing state and phase, highlighting the complexity of heterogeneous oxidation in the atmosphere. The effect of gas-particle partitioning on the estimated overall lifetime (gas C particle) for several organophosphate esters (OPEs) was also examined through the explicit modeling of this process. The overall atmospheric lifetimes of TBEP, tris-2-ethylhexyl phosphate (TEHP) and tris-1,3-dichloro-2-propyl phosphate (TDCPP) were estimated to be 1.9, 1.9 and 2.4 days respectively, and are highly dependent upon particle size. These results demonstrate that modeling the atmospheric fate of particle-phase toxic compounds for the purpose of risk assessment must include the gas-particle partitioning process, and in the future include the effect of other particulate components on the evaporation kinetics and/or the heterogeneous loss rates.
更多
查看译文
关键词
Organophosphorus Flame Retardants
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要