Thermoelectric properties of zigzag silicene nanoribbons doped with Co impurity atoms

Journal of Magnetism and Magnetic Materials(2015)

引用 5|浏览1
暂无评分
摘要
Thermoelectric properties of silicene nanoribbons doped with Co adatoms located in the edge positions are investigated theoretically by ab initio numerical methods based on the density functional theory. The adatoms are shown to considerably influence the corresponding electronic band structure, which results in two different magnetic states of the nanoribbons – ferrimagnetic with semiconducting transport properties and ferromagnetic of metallic character. In the former state magnetic moments at the two edges are antiparallel, while in the latter case they are parallel. Numerical calculations show that a significant spin thermopower can occur in the ferrimagnetic state due to a non-zero band-gap, while in the ferromagnetic state both conventional and spin thermopowers are rather moderate. Thus, the ferrimagnetic state arising due to the presence of impurities at the edge positions appears to be the most appropriate from the point of view of spin thermoelectric phenomena.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要