Identifying distinct nanoscopic features of native collagen fibrils towards early diagnosis of pelvic organ prolapse

Nanomedicine: Nanotechnology, Biology and Medicine(2016)

Cited 26|Views9
No score
Abstract
Pelvic organ prolapse (POP) is characterized by weakening of the connective tissues and loss of support for the pelvic organs. Collagen is the predominant, load-bearing protein within pelvic floor connective tissues. In this study, we examined the nanoscopic structures and biomechanics of native collagen fibrils in surgical, vaginal wall connective tissues from healthy women and POP patients. Compared to controls, collagen fibrils in POP samples were bulkier, more uneven in width and stiffer with aberrant D-period. Additionally, the ratio of collagen I (COLI) and collagen III (COLIII) is doubled in POP with a concomitant reduction of the amount of total collagen. Thus, POP is characterized by abnormal biochemical composition and biophysical characteristics of collagen fibrils that form a loose and fragile fiber network accountable for the weak load-bearing capability. The study identifies nanoscale alterations in collagen as diagnostic markers that could enable pre-symptomatic or early diagnosis of POP.
More
Translated text
Key words
Collagen fibril,Pelvic organ prolapse,Biomechanics,D-period
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined