Room-temperature synthesis of nanocrystalline titanium dioxide via electrochemical anodization

Materials Science in Semiconductor Processing(2014)

Cited 12|Views2
No score
Abstract
This paper presents a study of the growth of nanoporous anatase and rutile phases of titanium dioxide (TiO2) subjected to electrochemical anodization at room temperature without post-thermal treatment, using sulfuric acid as the electrolyte. Effects of the applied voltage on the morphological, structural, and photoelectrochemical (PEC) properties were examined. Images from field emission scanning electron microscopy reveal that pore size could be manipulated by changing the anodization voltage. In addition, X-ray diffraction (XRD) results indicate that anatase and rutile phases of TiO2 appeared in samples subjected to minimum anodization voltages of 100V and 150V. The Scherrer method was used to calculate the mean crystallite size, and the interplanar d-spacing formula was used to obtain the in-plane and out-of-plane strains. XRD measurements reveal that the amount of anatase and rutile crystallinity and their mean crystallite sizes were affected significantly by the anodization voltage. Results of the PEC studies reveal that the photocurrent density and photoconversion efficiency increased with increasing anodization voltage. In addition, the synthesized nanoporous TiO2 showed stable photoresponse where only a small decay of photocurrent density is observed in numerous on-to-off illumination cycles.
More
Translated text
Key words
Anodization,Crystal growth,Nanocrystalline titanium dioxide,Photoelectrochemical,Room temperature
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined