Allometric and non‐allometric consequences of inbreeding on Drosophila melanogaster wings

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY(2011)

引用 13|浏览16
暂无评分
摘要
Inbreeding is expected to increase the variability in size and shape within populations. The distinct effects of inbreeding on size and shape suggest that they are governed by different developmental pathways. One unresolved question is whether the non-allometric shape component is partially unconstrained developmentally and therefore whether shape is evolvable. In the present study, we utilized a mass outbred population of Drosophila melanogaster maintained at standard laboratory conditions. Eight lines with equivalent expected levels of inbreeding (F approximate to 0.67) were obtained by restricting the size of each population to two pairs for nine generations. Nine landmarks were measured on Drosophila wings of the inbreed lines and compared with those of the mass population. Wing landmarks comprise an excellent model system for studying evolution of size and shape. Landmark measurements were analyzed with a Procrustes generalized least squares procedure. To visualize global shape changes among samples, we reconstructed the mean shape and the shape changes related to both the allometric and non-allometric components. An increased variability in the non-allometric shape component was found with inbreeding. This indicated that shape was not entirely developmentally constrained, and therefore that shape appears to be evolvable. (C) 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 626-634.
更多
查看译文
关键词
allometry,wing shape
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要