Molecular modeling of hydrotalcite structure intercalated with transition metal oxide anions: CrO42- and VO43-

Journal of Physical Chemistry A(2011)

引用 38|浏览4
暂无评分
摘要
Molecular dynamics (MD) simulations are used to study the interlayer structure, hydrogen bonding, and energetics of hydration of Mg/Al (2:1 and 4:1) layered double hydroxide (LDH) or hydrotalcite (HT) intercalated with oxymetal anions, CrO(4)(2-), and VO(4)(3-). The ab initio forcefield COMPASS is employed for the simulations. The charge on the oxymetal anions is determined by quantum mechanical density functional theory. The structural behavior of the oxymetal anions in LDH directly relates to the energetic relationships, with electrostatic and H-bonding interactions between the anions, hydroxide sites of the metal hydroxide layers, and the interlayer water molecules. Distinct minima in the hydration energy indicate the presence of energetically well-defined structural states with specific water content. The experimentally identified variability in the retention of the CrO(4)(2-) and VO(4)(3-) is well reflected in the calculations and self-diffusion coefficients obtained from the simulations give insight into the mobility of the intercalated species.
更多
查看译文
关键词
hydrotalcite structure,transition metal oxide anions,molecular modeling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要