Improved discrimination of volcanic complexes, tectonic features, and regolith properties in Mare Serenitatis from Earth‐based radar mapping

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS(2014)

引用 40|浏览35
暂无评分
摘要
Radar images at 70 cm wavelength show 4-5dB variations in backscatter strength within regions of relatively uniform spectral reflectance properties in central and northern Mare Serenitatis, delineating features suggesting lava flow margins, channels, and superposition relationships. These backscatter differences are much less pronounced at 12.6 cm wavelength, consistent with a large component of the 70 cm echo arising from the rough or blocky transition zone between the mare regolith and the intact bedrock. Such deep probing is possible because the ilmenite content, which modulates microwave losses, of central Mare Serenitatis is generally low (2-3% by weight). Modeling of the radar returns from a buried interface shows that an average regolith thickness of 10m could lead to the observed shifts in 70 cm echo power with a change in TiO2 content from 2% to 3%. This thickness is consistent with estimates of regolith depth (10-15m) based on the smallest diameter for which fresh craters have obvious blocky ejecta. The 70 cm backscatter differences provide a view of mare flow-unit boundaries, channels, and lobes unseen by other remote sensing methods. A localized pyroclastic deposit associated with Rima Calippus is identified based on its low radar echo strength. Radar mapping also improves delineation of units for crater age dating and highlights a 250 km long, east-west trending feature in northern Mare Serenitatis that we suggest is a large graben flooded by late-stage mare flows.
更多
查看译文
关键词
Moon,volcanism,regolith,radar
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要