The Effect Of P-4e-Bp1 And P-Eif4e On Cell Proliferation In A Breast Cancer Model

International Journal of Oncology(2011)

Cited 29|Views0
No score
Abstract
Cell signaling pathways and protein translation are crucial for understanding malignant transformation. 4E-BP1 and the eIF4F complex regulate cap-dependent translation. We investigated how 4E-BP1 and eIF4E phosphorylation status affects in vitro and in vivo cell proliferation in a breast cancer model. Cells from 2 breast carcinoma lines (MDA-MB 231 and MDA-MB 468) and human fibroblasts (IMR90 cells) were infected in vitro with a retrovirus carrying a wild-type 4E-BP1 or a mutant 4E-BP1 unable to hyperphosphorylate. Overexpression of the mutant 4E-BP1 induced a significant decrease in cell proliferation in IMR90 and MDA-MB 468 cells, but not in MDA-MB 231 cells. A correlation was observed between baseline-phosphorylated eIF4E (p-eIF4E) levels and sensitivity to 4E-BP1 transduction. By co-immunoprecipitation, p-eIF4E seemed to present lower affinity for 4E-BP1 than total eIF4E in MDA-MB 468 cells. After treatment with CGP57380, the MAP kinase-interacting kinase (MNK) inhibitor, downregulation of p-eIF4E levels was associated with an increase of E-cadherin and beta-catenin protein expression. These results provide evidence that 4E-BP1 transduction leads to a decrease in cell proliferation, and that high p-eIF4E levels may counteract the suppressor effect of 4E-BP1. We propose that high p-4E-BP1 and p-eIF4E levels are central factors in cell signaling and reflect the oncogenic potential of cell signaling pathways in breast cancer.
More
Translated text
Key words
4E-binding protein 1, eukaryotic initiation factor 4E, breast cancer, protein translation, E-cadherin, beta-catenin
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined