Can non-native smallmouth bass, Micropterus dolomieu , be swamped by hatchery fish releases to increase juvenile Chinook salmon, Oncorhynchus tshawytscha , survival?

Environmental Biology of Fishes(2008)

引用 15|浏览15
暂无评分
摘要
One of the strategies that can be used to reduce predation impacts to valued fish species is by swamping predators with more prey than they can eat. We examined whether this approach was viable by calculating the maximum bioenergetic consumption potential of non-native smallmouth bass Micropterus dolomieu on fall Chinook salmon Oncorhynchus tshawytscha juveniles in the Yakima River throughout the spring between 1998 and 2002 and comparing those estimates to previously published estimates of fall Chinook salmon consumption. We found that the smallmouth bass population consumed fall Chinook salmon well below their bioenergetic potential. However, individual smallmouth bass that were piscivorous were eating other food items at a level near satiation. Furthermore, the maximum consumption potential was relatively low prior to mid-April, and then increased substantially to a peak in May. Predation mortality to hatchery fall Chinook salmon could be reduced within a year by releasing hatchery fall Chinook salmon that will emigrate quickly prior to mid-April, when predation potential is still very low. However, attempting to swamp predators with hatchery Chinook salmon to benefit naturally produced Chinook salmon poses uncertain benefits to natural origin fish and likely unacceptable costs to hatchery fish. Considerable swamping is occurring by other naturally produced fish species in the Yakima River such as dace Rhinichthys spp., mountain whitefish Prosopium williamsoni , and crayfish Pacificastus spp. Therefore, it is important to consider impacts to these non-target species because they could have indirect predation impacts on Chinook salmon.
更多
查看译文
关键词
Predation,Satiation,Yakima River,Salmonidae,Bioenergetics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要