Nickel(II)-induced nasal epithelial toxicity and oxidative mitochondrial damage.

Environmental toxicology and pharmacology(2016)

引用 30|浏览21
暂无评分
摘要
In probing the underlying mechanisms of nickel(II)-induced cytotoxicity on nasal epithelium, we investigated the effects of nickel(II) acetate on nasal epithelial RPMI-2650 cells. Nickel(II) elicited apoptosis, as signified by pyknotic and fragmented nuclei, increased caspase-3/7 activity, and an increase in annexin V binding, hypodiploid DNA, and Bax/Bcl-2 protein ratio. Nickel(II)-induced G2/M arrest was associated with up-regulation of p21(WAF1/CIP1) expression, decrease in phosphorylation at Thr(161) of Cdc2, and down-regulation of cyclin B1. Associated with these responses, ROS generation and mitochondrial depolarization increased in a nickel(II) concentration-dependent fashion. Pretreatment with N-acetylcysteine (NAC) attenuated these changes. p53 reporter gene assay and analyses of p53, Puma, Bax, and Bcl-2 protein levels indicated that NAC inhibited nickel(II)-induced activation of p53-mediated mitochondrial apoptotic pathway. Collectively, our study provides evidences that nickel(II) may induce oxidative damage on nasal epithelium in which antioxidant NAC protects cells against nickel(II)-induced apoptosis through the prevention of oxidative stress-mediated mitochondrial damage.
更多
查看译文
关键词
Nickel(II) acetate,Nasal epithelium,G2/M arrest,Apoptosis,Oxidative damage,N-acetylcysteine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要