Profiling the Secretome of Human Stem Cells from Dental Apical Papilla.

STEM CELLS AND DEVELOPMENT(2016)

引用 52|浏览25
暂无评分
摘要
Recent studies have shown that secretion of bioactive factors from mesenchymal stem cells (MSCs) plays a primary role in MSC-mediated therapy; especially for bone marrow-derived MSCs (BMSCs). MSCs from dental apical papilla (SCAPs) are involved in root development and may play a critical role in the formation of dentin and pulp. Bioactive factors secreted from SCAPs actively contribute to their environment; however, the SCAPs secretome remains unclear. To address this and gain a deeper understanding of the relevance of SCAPs secretions in a clinical setting, we used isobaric chemical tags and high-performance liquid chromatography with tandem mass spectrometry to profile the secretome of human SCAPs and then compared it to that of BMSCs. A total of 2,046 proteins were detected from the conditioned medium of SCAPs, with a false discovery rate of less than 1.0%. Included were chemokines along with angiogenic, immunomodulatory, antiapoptotic, and neuroprotective factors and extracellular matrix (ECM) proteins. The secreted levels of 151 proteins were found to differ by at least twofold when BMSCs and SCAPs were compared. Relative to BMSCs, SCAPs exhibited increased secretion of proteins that are involved in metabolic processes and transcription and lower levels of those associated with biological adhesion, developmental processes, and immune function. In addition, SCAPs secreted significantly larger amounts of chemokines and neurotrophins than BMSCs, whereas BMSCs secreted more ECM proteins and proangiogenic factors. These results may provide important clues regarding the molecular mechanisms associated with tissue regeneration and how they differ between cell sources.
更多
查看译文
关键词
Mesenchymal Stem Cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要