Effect of sample pooling and transport conditions on the clinical sensitivity of a real-time polymerase chain reaction assay for Campylobacter fetus subsp. venerealis in preputial samples from bulls.

Canadian journal of veterinary research = Revue canadienne de recherche veterinaire(2016)

引用 28|浏览1
暂无评分
摘要
The diagnosis of bovine genital campylobacteriosis (BGC) presents significant challenges, as traditional methods lack sensitivity when prolonged transport of samples is required. Assays of preputial samples by means of real-time polymerase chain reaction (PCR) provide good sensitivity and high throughput capabilities. However, there is limited information on the acceptable duration of transport and temperature during transport of samples. In addition, the use of pooled samples has proven to be a valuable strategy for the diagnosis of other venereal diseases in cattle. The objectives of the present study were to determine the effect of sample pooling and of transport time and temperature on the clinical sensitivity of a real-time quantitative PCR (qPCR) assay for Campylobacter fetus subsp. venerealis in preputial samples from beef bulls. Eight infected bulls and 176 virgin yearling bulls were used as the source of samples. The qPCR sensitivity was comparable for unpooled samples and pools of 5 samples, whereas sensitivity was decreased for pools of 10 samples. Sensitivity for the various pool sizes improved with repeated sampling. For shorter-term transport (2 and 48 h), sensitivity was greatest when the samples were stored at 4°C and 30°C, whereas for longer-term transport (96 h) sensitivity was greatest when the samples were stored at -20°C. The creation of pools of 5 samples is therefore a good option to decrease costs when screening bulls for BGC with the qPCR assay of direct preputial samples. Ideally the samples should be stored at 4°C and arrive at the laboratory within 48 h of collection, but when that is not possible freezing at -20°C could minimize the loss of sensitivity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要