High-performance triazole-containing brush polymers via azide–alkyne click chemistry: a new functional polymer platform for electrical memory devices

NPG ASIA MATERIALS(2015)

引用 43|浏览22
暂无评分
摘要
Two series of well-defined brush polymers bearing a triazole moiety on each bristle were prepared from the click chemistry reactions of a poly(glycidyl azide) (PG) and a poly(4-azidomethylstyrene) (PS) with alkyne derivatives. The thin-film morphologies and properties, especially electrical memory performances, of these triazole-containing brush polymers were investigated in detail. The brush polymers with a triazole ring substituted with an alkyl or alkylenylphenyl group in the bristle exhibited only dielectric characteristics. By contrast, the other brush polymers bearing a triazole ring substituted with phenyl or its derivatives with a longer π-conjugation length in the bristle demonstrated excellent unipolar permanent memory behaviors with low power consumption, high ON/OFF current ratios and high stability and reliability under ambient air conditions. Furthermore, their memory type could be tuned to p - or n -type by the incorporation of an electron-donating or -accepting group into the phenyl unit linked to the triazole moiety. Overall, this study presents the first demonstration of the azide–alkyne click chemistry synthesis of triazole moieties with substituent(s) that exhibit a resonance effect; this approach is a very powerful synthetic route to develop electrical memory polymers suitable for the low-cost mass production of high-performance, polarity-free programmable memory devices.
更多
查看译文
关键词
Electronic devices,Information storage,Materials Science,general,Biomaterials,Optical and Electronic Materials,Structural Materials,Energy Systems,Surface and Interface Science,Thin Films
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要