Cysteines 208 and 241 in Ero1α are required for maximal catalytic turnover.

Redox Biology(2016)

引用 13|浏览11
暂无评分
摘要
Endoplasmic reticulum (ER) oxidoreductin 1α (Ero1α) is a disulfide producer in the ER of mammalian cells. Besides four catalytic cysteines (Cys94, Cys99, Cys394, Cys397), Ero1α harbors four regulatory cysteines (Cys104, Cys131, Cys208, Cys241). These cysteines mediate the formation of inhibitory intramolecular disulfide bonds, which adapt the activation state of the enzyme to the redox environment in the ER through feedback signaling. Accordingly, disulfide production by Ero1α is accelerated by reducing conditions, which minimize the formation of inhibitory disulfides, or by mutations of regulatory cysteines. Here we report that reductive stimulation enhances Ero1α activity more potently than the mutation of cysteines. Specifically, mutation of Cys208/Cys241 does not mechanistically mimic reductive stimulation, as it lowers the turnover rate of Ero1α in presence of a reducing agent. The Cys208/Cys241 pair therefore fulfills a function during catalysis that reaches beyond negative regulation. In agreement, we identify a reciprocal crosstalk between the stabilities of the Cys208–Cys241 disulfide and the inhibitory disulfide bonds involving Cys104 and Cys131, which also controls the recruitment of the H2O2 scavenger GPx8 to Ero1α. Two possible mechanisms by which thiol–disulfide exchange at the Cys208/Cys241 pair stimulates the catalytic turnover under reducing conditions are discussed.
更多
查看译文
关键词
Ero1α,PDI,Disulfide bond,Redox homeostasis,Endoplasmic reticulum
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要