MIF is necessary for late-stage melanoma patient MDSC immune suppression and differentiation.

CANCER IMMUNOLOGY RESEARCH(2016)

引用 65|浏览19
暂无评分
摘要
Highly aggressive cancers "entrain" innate and adaptive immune cells to suppress antitumor lymphocyte responses. Circulating myeloid-derived suppressor cells (MDSC) constitute the bulk of monocytic immunosuppressive activity in late-stage melanoma patients. Previous studies revealed that monocyte-derived macrophage migration inhibitory factor (MIF) is necessary for the immunosuppressive function of tumor-associated macrophages and MDSCs in mouse models of melanoma. In the current study, we sought to determine whether MIF contributes to human melanoma MDSC induction and T-cell immunosuppression using melanoma patient-derived MDSCs and an ex vivo coculture model of human melanoma-induced MDSC. We now report that circulating MDSCs isolated from late-stage melanoma patients are reliant upon MIF for suppression of antigen-independent T-cell activation and that MIF is necessary for maximal reactive oxygen species generation in these cells. Moreover, inhibition of MIF results in a functional reversion from immunosuppressive MDSC to an immunostimulatory dendritic cell (DC)-like phenotype that is at least partly due to reductions in MDSC prostaglandin E-2 (PGE(2)). These findings indicate that monocyte-derived MIF is centrally involved in human monocytic MDSC induction/immunosuppressive function and that therapeutic targeting of MIF may provide a novel means of inducing antitumor DC responses in late-stage melanoma patients. (C) 2015 AACR.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要