Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction.

NANOSCALE(2015)

Cited 108|Views15
No score
Abstract
We demonstrate a new strategy for tuning the size of large-diameter and few-walled nitrogen-doped carbon nanotubes (N-CNTs) from 50 to 150 nm by varying the transition metal (TM = Fe, Co, Ni or Mn) used to catalyze graphitization of dicyandiamide. Fe yielded the largest tubes, followed by Co and Ni, while Mn produced a clot-like carbon morphology. We show that morphology is correlated with electrocatalytic activity for the oxygen reduction reaction (ORR). A clear trend of Fe > Co > Ni > Mn for the ORR catalytic activity was observed, in both alkaline media and more demanding acidic media. The Fe-derived N-CNTs exhibited the highest BET (similar to 870 m(2) g(-1)) and electrochemically accessible (similar to 450 m(2) g(-1)) surface areas and, more importantly, the highest concentration of nitrogen incorporated into the carbon planes. Thus, in addition to the intrinsic high activity of Fe-derived catalysts, the high surface area and nitrogen doping contribute to high ORR activity. This work, for the first time, demonstrates size-controlled synthesis of large-diameter N-doped carbon tube electrocatalysts by varying the metal used in N-CNT generation. Electrocatalytic activity of the Fe-derived catalyst is already the best among studied metals, due to the high intrinsic activity of possible Fe-N coordination. This work further provides a promising route to advanced Fe-N-C nonprecious metal catalysts by generating favorable morphology with more active sites and improved mass transfer.
More
Translated text
Key words
Metal-Organic Frameworks
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined