A Haploid Genetic Screen Identifies Heparan Sulfate Proteoglycans Supporting Rift Valley Fever Virus Infection

JOURNAL OF VIROLOGY(2016)

引用 93|浏览24
暂无评分
摘要
Rift Valley fever virus (RVFV) causes recurrent insect-borne epizootics throughout the African continent, and infection of humans can lead to a lethal hemorrhagic fever syndrome. Deep mutagenesis of haploid human cells was used to identify host factors required for RVFV infection. This screen identified a suite of enzymes involved in glycosaminoglycan (GAG) biogenesis and transport, including several components of the cis-oligomeric Golgi (COG) complex, one of the central components of Golgi complex trafficking. In addition, disruption of PTAR1 led to RVFV resistance as well as reduced heparan sulfate surface levels, consistent with recent observations that PTAR1-deficient cells exhibit altered Golgi complex morphology and glycosylation defects. A variety of biochemical and genetic approaches were utilized to show that both pathogenic and attenuated RVFV strains require GAGs for efficient infection on some, but not all, cell types, with the block to infection being at the level of virion attachment. Examination of other members of the Bunyaviridae family for GAG-dependent infection suggested that the interaction with GAGs is not universal among bunyaviruses, indicating that these viruses, as well as RVFV on certain cell types, employ additional unidentified virion attachment factors and/or receptors.
更多
查看译文
关键词
virus,rift,infection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要