A simple method for inducing estrous cycle stage-specific morphological changes in the vaginal epithelium of immature female mice.

LABORATORY ANIMALS(2016)

引用 6|浏览14
暂无评分
摘要
The vaginal epithelium of the adult female laboratory rodent changes from mucous secretion to cornification over the course of the estrous cycle. The morphophysiological changes occur with such regularity, accuracy and precision that the specific stage of the estrous cycle in the rat can be determined by inspection of the vaginal opening and/or exfoliative vaginal cytology. However, in the mouse, post-mortem vaginal histology is often required to determine the estrous cycle stage for ensuring the required level of reliability. Consequently, an excess number of female adult mice are needed to allow for the delivery of sufficient numbers of mice in a desired estrous cycle stage. In this study, we demonstrate that the standard procedure for oocyte superovulation and collection in the laboratory mouse (e.g. injection of equine chorionic gonadotropin followed 48h later by human chorionic gonadotropin) can also be reliably used to induce changes in the epithelium of 3.5-week-old mouse vaginas in an estrous cycle stage-specific manner (e.g. establishment and replacement of a mucous secreting epithelium with a cornified epithelium; induction of cornification-associated loricrin expression). The superovulation protocol thus allows for the efficient and economic induction of estrous cycle stage-specific characteristics in the Mullerian duct-derived vagina thereby avoiding the necessity of post-mortem identification of the estrous cycle stage. In addition, our study indicates that the laboratory mouse vagina is an excellent organ for studying the sequence of events leading to cornification.
更多
查看译文
关键词
gonadotropins,Mullerian duct-derived organs,cornification,reduction,laboratory animals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要