谷歌浏览器插件
订阅小程序
在清言上使用

Peptide-stimulated angiogenesis: Role of lung endothelial caveolar signaling and nitric oxide.

Nitric oxide : biology and chemistry(2015)

引用 1|浏览17
暂无评分
摘要
Endothelial nitric oxide (NO) synthase (eNOS)-derived NO plays a critical role in the modulation of angiogenesis in the pulmonary vasculature. We recently reported that an eleven amino acid (SSWRRKRKESS) cell penetrating synthetic peptide (P1) activates caveolar signaling, caveloae/eNOS dissociation, and enhance NO production in lung endothelial cells (EC). This study examines whether P1 promote angiogenesis via modulation of caveolar signaling and the level of NO generation in EC and pulmonary artery (PA) segments. P1-enhanced tube formation and cell sprouting were abolished by caveolae disruptor Filipin (FIL) in EC and PA, respectively. P1 enhanced eNOS activity and angiogenesis were attenuated by inhibition of eNOS as well as PLCγ-1, PKC-α but not PI3K-mediated caveolar signaling in intact EC and/or PA. P1 failed to enhance the catalytic activity of eNOS and angiogenesis in caveolae disrupted EC by FIL. Lower (0.01 mM) concentration of NOC-18 enhanced angiogenesis without inhibition of eNOS activity whereas higher concentration of NOC-18 (1.0 mM) inhibited eNOS activity and angiogenesis in EC. Inhibition of eNOS by l-NAME in the presence of P1 resulted in near total loss of tube formation in EC. Although P1 enhanced angiogenesis mimicked only by lower concentrations of NO generated by NOC-18, this response is independent of caveolar signaling/integrity. These results suggest that P1-enhanced angiogenesis is regulated by dynamic process involving caveolar signaling-mediated increased eNOS/NO activity or by the direct exposure to NOC-18 generating only physiologic range of NO independent of caveolae in lung EC and PA segments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要